小編給大家分享一下PyTorch之圖像和Tensor填充的示例分析,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

在PyTorch中可以對圖像和Tensor進行填充,如常量值填充,鏡像填充和復制填充等。在圖像預處理階段設置圖像邊界填充的方式如下:
import vision.torchvision.transforms as transforms img_to_pad = transforms.Compose([ transforms.Pad(padding=2, padding_mode='symmetric'), transforms.ToTensor(), ])
對Tensor進行填充的方式如下:
import torch.nn.functional as F feature = feature.unsqueeze(0).unsqueeze(0) avg_feature = F.pad(feature, pad = [1, 1, 1, 1], mode='replicate')
這里需要注意一點的是,transforms.Pad只能對PIL圖像格式進行填充,而F.pad可以對Tensor進行填充,目前F.pad不支持對2D Tensor進行填充,可以通過unsqueeze擴展為4D Tensor進行填充。
F.pad的部分源碼如下:
@torch._jit_internal.weak_script
def pad(input, pad, mode='constant', value=0):
# type: (Tensor, List[int], str, float) -> Tensor
r"""Pads tensor.
Pading size:
The number of dimensions to pad is :math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor`
and the dimensions that get padded begins with the last dimension and moves forward.
For example, to pad the last dimension of the input tensor, then `pad` has form
`(padLeft, padRight)`; to pad the last 2 dimensions of the input tensor, then use
`(padLeft, padRight, padTop, padBottom)`; to pad the last 3 dimensions, use
`(padLeft, padRight, padTop, padBottom, padFront, padBack)`.
Padding mode:
See :class:`torch.nn.ConstantPad2d`, :class:`torch.nn.ReflectionPad2d`, and
:class:`torch.nn.ReplicationPad2d` for concrete examples on how each of the
padding modes works. Constant padding is implemented for arbitrary dimensions.
Replicate padding is implemented for padding the last 3 dimensions of 5D input
tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of
3D input tensor. Reflect padding is only implemented for padding the last 2
dimensions of 4D input tensor, or the last dimension of 3D input tensor.
.. include:: cuda_deterministic_backward.rst
Args:
input (Tensor): `Nd` tensor
pad (tuple): m-elem tuple, where :math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.
mode: 'constant', 'reflect' or 'replicate'. Default: 'constant'
value: fill value for 'constant' padding. Default: 0
Examples::
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p1d = (1, 1) # pad last dim by 1 on each side
>>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding
>>> print(out.data.size())
torch.Size([3, 3, 4, 4])
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
>>> out = F.pad(t4d, p2d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 3, 8, 4])
>>> t4d = torch.empty(3, 3, 4, 2)
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
>>> out = F.pad(t4d, p3d, "constant", 0)
>>> print(out.data.size())
torch.Size([3, 9, 7, 3])
"""
assert len(pad) % 2 == 0, 'Padding length must be divisible by 2'
assert len(pad) // 2 <= input.dim(), 'Padding length too large'
if mode == 'constant':
ret = _VF.constant_pad_nd(input, pad, value)
else:
assert value == 0, 'Padding mode "{}"" doesn\'t take in value argument'.format(mode)
if input.dim() == 3:
assert len(pad) == 2, '3D tensors expect 2 values for padding'
if mode == 'reflect':
ret = torch._C._nn.reflection_pad1d(input, pad)
elif mode == 'replicate':
ret = torch._C._nn.replication_pad1d(input, pad)
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
elif input.dim() == 4:
assert len(pad) == 4, '4D tensors expect 4 values for padding'
if mode == 'reflect':
ret = torch._C._nn.reflection_pad2d(input, pad)
elif mode == 'replicate':
ret = torch._C._nn.replication_pad2d(input, pad)
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
elif input.dim() == 5:
assert len(pad) == 6, '5D tensors expect 6 values for padding'
if mode == 'reflect':
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
elif mode == 'replicate':
ret = torch._C._nn.replication_pad3d(input, pad)
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError
else:
ret = input # TODO: remove this when jit raise supports control flow
raise NotImplementedError("Only 3D, 4D, 5D padding with non-constant padding are supported for now")
return ret以上是“PyTorch之圖像和Tensor填充的示例分析”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注創新互聯成都網站設計公司行業資訊頻道!
另外有需要云服務器可以了解下創新互聯scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業上云的綜合解決方案,具有“安全穩定、簡單易用、服務可用性高、性價比高”等特點與優勢,專為企業上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
網頁標題:PyTorch之圖像和Tensor填充的示例分析-創新互聯
當前網址:http://www.yijiale78.com/article12/csphgc.html
成都網站建設公司_創新互聯,為您提供網站維護、軟件開發、App開發、網站導航、面包屑導航、企業網站制作
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯