小驚大怪

你是不是在用Python3或者在windows系統上編程?最重要的是你對進程和線程不是很清楚?那么恭喜你,在python分布式進程中,會有坑等著你去挖。。。(hahahaha,此處允許我嚇唬一下你)開玩笑的啦,不過,如果你知道序列中不支持匿名函數,那這個坑就和你say byebye了。好了話不多數,直接進入正題。
分布式進程
正如大家所知道的Process比Thread更穩定,而且Process可以分布到多臺機器上,而Thread最多只能分布到同一臺機器的多個CPU上。Python的multiprocessing模塊不但支持多進程,其中managers子模塊還支持把多進程分布到多臺機器上。一個服務進程可以作為調度者,將任務分布到其他多個進程中,依靠網絡通信。由于managers模塊封裝很好,不必了解網絡通信的細節,就可以很容易地編寫分布式多進程程序。
代碼記錄
舉個例子
如果我們已經有一個通過Queue通信的多進程程序在同一臺機器上運行,現在,由于處理任務的進程任務繁重,希望把發送任務的進程和處理任務的進程分布到兩臺機器上,這應該怎么用分布式進程來實現呢?你已經知道了原有的Queue可以繼續使用,而且通過managers模塊把Queue通過網絡暴露出去,就可以讓其他機器的進程來訪問Queue了。好,那我們就這么干!
寫個task_master.py
我們先看服務進程。服務進程負責啟動Queue,把Queue注冊到網絡上,然后往Queue里面寫入任務。
#!/user/bin/pytthon
# -*- coding:utf-8 -*-
# @Time: 2018/3/3 16:46
# @Author: lichexo
# @File: task_master.py
import random, time, queue
from multiprocessing.managers import BaseManager
# 發送任務的隊列:
task_queue = queue.Queue()
# 接收結果的隊列:
result_queue = queue.Queue()
# 從BaseManager繼承的QueueManager:
class QueueManager(BaseManager):
pass
# 把兩個Queue都注冊到網絡上, callable參數關聯了Queue對象:
QueueManager.register('get_task_queue', callable=lambda: task_queue)
QueueManager.register('get_result_queue', callable=lambda: result_queue)
# 綁定端口5000, 設置驗證碼'abc':
manager = QueueManager(address=('', 5000), authkey=b'abc')
# 啟動Queue:
manager.start()
# 獲得通過網絡訪問的Queue對象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放幾個任務進去:
for i in range(10):
n = random.randint(0, 10000)
print('Put task %d...' % n)
task.put(n)
# 從result隊列讀取結果:
print('Try get results...')
for i in range(10):
r = result.get(timeout=10)
print('Result: %s' % r)
# 關閉:
manager.shutdown()
print('master exit.')
當前文章:Python分布式進程中你會遇到的問題解析-創新互聯
當前鏈接:http://www.yijiale78.com/article34/cdpese.html
成都網站建設公司_創新互聯,為您提供網站策劃、服務器托管、軟件開發、動態網站、微信小程序、App設計
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯