99偷拍视频精品区一区二,口述久久久久久久久久久久,国产精品夫妇激情啪发布,成人永久免费网站在线观看,国产精品高清免费在线,青青草在线观看视频观看,久久久久久国产一区,天天婷婷久久18禁,日韩动漫av在线播放直播

gis關聯技術 arcgis關聯和連接的區別

GIS技術的發展趨勢

GIS在資源環境領域的應用方興未艾,從技術、地理信息、經濟社會的需求等方面分析,在該領域有以下趨勢及建議:

創新互聯公司主營饒河網站建設的網絡公司,主營網站建設方案,重慶APP開發公司,饒河h5小程序定制開發搭建,饒河網站營銷推廣歡迎饒河等地區企業咨詢

應用軟件數據端口應有專門化,專業化方向發展,在同類型同方向的GIS數據交流共享方向提供適當的方便,以解決GIS數據來源和數據質量難以保證的問題。

結合國家信息化推進工作,以電子政務相關工程為基礎,推動GIS在資源環境管理中的推廣應用。

信息化建設已成為我國各級 *** 及企業的重要任務,GIS在以資源、能源、生產、資金等空間綜合配置、優化組合為目的的信息化建設中,可以發揮應有的作用;結合相應的應用工程,推動GIS的發展;

應用往專業化方向發展,功能由通用管理功能轉向資源評估、監督、跟蹤分析等專業功能方向發展。

隨著經濟社會的發展,經濟社會與資源環境之間的各方面的矛盾及問題逐漸暴露出來,這些問題在時間和空間上具有諸多的關聯性,分析這些問題、提出合理的解決方案建議,需要功能更專業化的GIS軟件系統支持;

支持多源、多尺度、多類型集成應用的軟件平臺工具的開發應用。

信息獲取技術的快速發展和多源化趨勢,要求資源環境方面的GIS應能夠接收、處理及分析多種來源、多尺度的地理信息;

促進3S技術集成應用,推動專業技術及軟件的發展,全球定位系統、遙感技術與GIS的集成應用已成為GIS軟件發展的趨勢之一,而這種應用的發展是在應用推動的基礎上建立的,針對特定的應用領域的集成化的GIS將成為資源環境領域GIS的發展方向,也是系統與業務結合的需要;

開展專業應用系統開發建設,結合資源環境各領域的需求,開發多種專業化的GIS,如針對性生態保護區、生態功能區、地下水、生物資源等領域的專業性GIS軟件與管理系統。

國內GIS現狀和對策

地理信息系統技術是一門綜合性的技術,它的發展是與地理學、地圖學、攝影測量學、遙感技術、數學和統計科學、信息技術等有關學科的發展分不開的。

GIS的發展可分為四個階段:第一個階段是初始發展階段,20世紀60年代世界上第一個GIS系統由加拿大測量學家R.F.Tomlison提出并建立,主要用于自然資源的管理和規劃;第二個階段是發展鞏固階段,20世紀70年代由于計算機硬件和軟件技術的飛速發展,尤其是大容量存儲設備的使用,促進了GIS朝實用的方向發展,不同專題、不同規模、不同類型的各具特色的地理信息系統在世界各地紛紛付諸研制,如美國、英國、德國、瑞典和日本等國對GIS的研究都投入了大量的人力、物力和財力;第三個階段是推廣應用階段,20世紀80年代,GIS逐步走向成熟,并在全世界范圍內全面推廣,應用領域不斷擴大,并與衛星遙感技術結合,開始應用于全球性的問題,這個階段涌現出一大批GIS軟件,如ARC/INFO,GENAMAP,SPANS,MAPINFO,ERDAS,Microstation等;第四個階段是蓬勃發展階段,20世紀90年代,隨著地理信息產品的建立和數字化信息產品在全世界的普及,GIS成為確定性的產業,并逐漸滲透到各行各業,成為人們生活、學習和工作不可缺少的工具和助手。

地理信息系統的研制與應用在我國起步較晚,雖然歷史較短,但發展勢頭迅猛。

我國GIS的發展可分為三個階段。

第一階段從1970年到1980年,為準備階段,主要經歷了提出倡議、組建隊伍、培訓人才、組織個別實驗研究等階段。

機械制圖和遙感應用,為GIS的研制和應用做了技術和理論上的準備。

第二階段從1981年到1985年,為起步階段,完成了技術引進、數據規范和標準的研究、空間數據庫的建立、數據處理和分析算法及應用軟件的開發等環節,對GIS進行了理論探索和區域性的實驗研究。

第三個階段從1986年到2013年,為初步發展階段,我國GIS的研究和應用進入有組織、有計劃、有目標的階段,逐步建立了不同層次、不同規模的組織機構、研究中心和實驗室。

GIS研究逐步與國民經濟建設和社會生活需求相結合,并取得了重要進展和實際應用效益。

主要表現在四個方面:(1)制定了國家地理信息系統規范,解決信息共享和系統兼容問題,為全國地理信息系統的建立做準備。

(2)應用型GIS發展迅速。

(3)在引進的基礎上擴充和研制了一批軟件。

(4)開始出版有關地理信息系統理論、技術和應用等方面的書籍,設立了地理信息系統專業,培養了大批人才,并積極開展國際合作,參與全球性地理信息系統的討論和實驗。

在科技部等國家有關部門的大力組織和支持下,國產GIS基礎軟件開發工作取得了重要進展,出現了一批GIS高技術企業,開發出了較為成熟的國產GIS軟件,如MapGIS、GeoStar、CityStar、SuperMap、MapEngine、GROW等,并形成了一定的產業規模。

這些國產GIS軟件以較高的性價比,打破了國外GIS軟件對我國市場的壟斷,有力促進了我國地理信息系統技術的發展。

這些年,GIS技術在我國得到了廣泛應用,其應用面從傳統的城市規劃、土地利用、測繪、環境保護、電力、電信、減災防災等領域滲透到礦產資源調查、海洋資源調查與管理等各方面,取得了豐碩的成果和巨大的經濟效益。

當前,國家有關部門正逐步將GIS嵌入到電子政務系統中。

隨著計算機和信息技術的快速發展,GIS技術得到了迅猛的發展。

GIS系統正朝著專業或大型化、社會化方向不斷發展著。

“大型化”體現在系統和數據規模兩個方面;“社會化”則要求GIS要面向整個社會,滿足社會各界對有關地理信息的需求,簡言之就是“開放數據”、“簡化操作”,“面向服務”,通過網絡實現從數據乃至系統之間的完全共享和互動。

下面我們從地理信息系統技術角度來討論和分析當前GIS的相關技術及其發展趨勢。

1.1 空間信息的獲取、處理與交換地理空間數據是GIS的血液,構建和維護空間數據庫是一項復雜、工作量巨大的工程,它包括:數據的獲取、校驗和規范化、結構化處理、數據維護等過程。

GIS處理的數據對象是空間對象,有很強的時空特性,獲取數據的手段及數據的形式也復雜多樣。

獲取數據的基本方式有:野外全站儀平板測量、GPS測量、室內地圖掃描數字化、數字攝影測量、從遙感影像進行目標測量和數據轉換等。

這些獲取技術已基本成熟。

同時,空間數據也具有很強的時效性,不同的空間數據必須進行周期不等的數據更新維護,空間數據庫中數據的準確、及時、完整是實現GIS應用系統價值的前提基礎。

空間數據維護往往涉及跨部門、跨行業的多種數據格式和多種數據類型的大量數據,提供有效的空間數據編輯更新手段是當前亟待解決的一個重要課題。

基于上述信息獲取技術,在過去的二十年間,國家有關部委和行業部門已經積累了大量原始數字化數據和相應資料,建立了1100多個大、中型數據庫以及大量的各類數字化地理基礎圖、專題圖、城市地籍圖等。

國家測繪局已經完成了全國l:100萬、 1:25萬基礎地理空間數據庫以及全國七大江河數字地形模型的建設,并啟動了全國l:5萬,部分省份1:1萬基礎地理空間數據庫的建設。

這些基礎數據有力促進了GIS技術的廣泛應用,進而產生了大量的GIS數據。

但由于地理信息系統軟件大多采用不同的空間數據模型,以及它們在地理實體上的認識差異,使得所積累的數據難以轉換和共享(即使能夠數據轉換,也會產生信息的丟失),從而形成一個個新的數據孤島。

制訂數據交換的格式標準已成為大家的共識。

一些國家和組織已經在進行這方面的工作,并定義了一些數據交換標準,如SDTS,OpenGIS聯盟制訂的GML,另外一些公認的數據格式如DXF,Shapefile和MIF文件格式等正逐漸成為數據交換的事實標準。

我國也在“九五”期間制定了地球空間數據轉換標準。

但是由于人們對空間信息認識和研究成果的制約,還沒有一個統一的地理數據模型,因此建立實用的數據交換格式和信息標準將是一個長期、復雜過程。

1.2 空間數據的管理空間數據的管理涉及到二個方面的內容:空間數據模型和空間數據庫。

空間數據模型刻畫了現實世界中空間實體及其相互間的聯系,它為空間數據的組織和空間數據庫的設計提供了基本的方法。

因此,空間數據模型的研究對設計空間數據庫和發展新一代GIS系統起著舉足輕重的作用。

在GIS中與空間信息有關的信息模型有三個,即基于對象(要素)(Feature)的模型、場(Field)模型以及網絡(Network)模型。

GIS基礎軟件平臺的研制和應用系統的設計開發一直沿用這三種空間數據模型,但這些模型在空間實體間的相互關系及其時空變化的描述與表達、數據組織、空間分析等方面均有較大的局限性,難以滿足新一代GIS基礎軟件平臺和應用系統發展的要求。

主要表現為:(1) 僅能表達空間點、線、面目標間極為有限的簡單拓撲關系,且這些拓撲關系的生成與維護耗時費力;(2) 難以有效地表達現實三維空間實體及其相互關系;(3) 適于記錄和表達某一時刻空間實體性狀及相互間關系靜態分布,難以有效地描述和表達空間實體及其相互間關系的時空變化;(4) 沒有考慮異地、異構、異質空間數據的互操作和分布式“對象”處理等問題。

針對上述不足,時空數據模型、三維數據模型、分布式空間數據管理、GIS設計的CASE工具等研究已成為當前國際上GIS空間數據模型研究的學術前沿。

GIS基本技術有哪些?

引言

地理信息系統(Geographic Information System,簡稱GIS)是計算機科學、地理學、測量學、地圖學等多門學科綜合的技術[1]。GIS的基本技術是空間數據庫、地圖可視化及空間分析,而空間數據庫是GIS的關鍵。空間數據挖掘技術作為當前數據庫技術最活躍的分支與知識獲取手段,在GIS中的應用推動著GIS朝智能化和集成化的方向發展。

1 空間數據庫與空間數據挖掘技術的特點

隨著數據庫技術的不斷發展和數據庫管理系統的廣泛應用,數據庫中存儲的數據量也在急劇增大,在這些海量數據的背后隱藏了很多具有決策意義的信息。但是,現今數據庫的大多數應用仍然停留在查詢、檢索階段,數據庫中隱藏的豐富的知識遠遠沒有得到充分的發掘和利用,數據庫中數據的急劇增長和人們對數據庫處理和理解的困難形成了強烈的反差,導致“人們被數據淹沒,但卻饑餓于知識”的現象。

空間數據庫(數據倉庫)中的空間數據除了其顯式信息外,還具有豐富的隱含信息,如數字高程模型〔DEM或TIN〕,除了載荷高程信息外,還隱含了地質巖性與構造方面的信息;植物的種類是顯式信息,但其中還隱含了氣候的水平地帶性和垂直地帶性的信息,等等。這些隱含的信息只有通過數據挖掘才能顯示出來。空間數據挖掘(Spatial Data Mining,簡稱SDM),或者稱為從空間數據庫中發現知識,是為了解決空間數據海量特性而擴展的一個新的數據挖掘的研究分支,是指從空間數據庫中提取隱含的、用戶感興趣的空間或非空間的模式和普遍特征的過程[2]。由于SDM的對象主要是空間數據庫,而空間數據庫中不僅存儲了空間事物或對象的幾何數據、屬性數據,而且存儲了空間事物或對象之間的圖形空間關系,因此其處理方法有別于一般的數據挖掘方法。SDM與傳統的地學數據分析方法的本質區別在于SDM是在沒有明確假設的前提下去挖掘信息、發現知識,挖掘出的知識應具有事先未知、有效和可實用3個特征。

空間數據挖掘技術需要綜合數據挖掘技術與空間數據庫技術,它可用于對空間數據的理解,對空間關系和空間與非空間關系的發現、空間知識庫的構造以及空間數據庫的重組和查詢的優化等。

2 空間數據挖掘技術的主要方法及特點

常用的空間數據挖掘技術包括:序列分析、分類分析、預測、聚類分析、關聯規則分析、時間序列分析、粗集方法及云理論等。本文從挖掘任務和挖掘方法的角度,著重介紹了分類分析、聚類分析和關聯規則分析三種常用的重要的方法。

2.1、分類分析

分類在數據挖掘中是一項非常重要的任務,目前在商業上應用最多。分類的目的是學會一個分類函數或分類模型(也常常稱作分類器),該模型能把數據庫中的數據項映射到給定類別中的某一個。分類和我們熟知的回歸方法都可用于預測,兩者的目的都是從歷史數據紀錄中自動推導出對給定數據的推廣描述,從而能對未來數據進行預測。和回歸方法不同的是,分類的輸出是離散的類別值,而回歸的輸出則是連續的數值。二者常表現為一棵決策樹,根據數據值從樹根開始搜索,沿著數據滿足的分支往上走,走到樹葉就能確定類別。空間分類的規則實質是對給定數據對象集的抽象和概括,可用宏元組表示。

要構造分類器,需要有一個訓練樣本數據集作為輸入。訓練集由一組數據庫記錄或元組構成,每個元組是一個由特征(又稱屬性)值組成的特征向量,此外,訓練樣本還有一個類別標記。一個具體樣本的形式可為:( v1, v2, ..., vn; c );其中vi表示字段值,c表示類別。

分類器的構造方法有統計方法、機器學習方法、神經網絡方法等等。統計方法包括貝葉斯法和非參數法(近鄰學習或基于事例的學習),對應的知識表示是判別函數和原型事例。機器學習方法包括決策樹法和規則歸納法,前者對應的表示為決策樹或判別樹,后者則一般為產生式規則。神經網絡方法主要是反向傳播(Back-Propagation,簡稱BP)算法,它的模型表示是前向反饋神經網絡模型(由代表神經元的節點和代表聯接權值的邊組成的一種體系結構),BP算法本質上是一種非線性判別函數[3]。另外,最近又興起了一種新的方法:粗糙集(rough set),其知識表示是產生式規則。

不同的分類器有不同的特點。有三種分類器評價或比較尺度:1) 預測準確度;2) 計算復雜度;3) 模型描述的簡潔度。預測準確度是用得最多的一種比較尺度,特別是對于預測型分類任務,目前公認的方法是10番分層交叉驗證法。計算復雜度依賴于具體的實現細節和硬件環境,在數據挖掘中,由于操作對象是海量的數據庫,因此空間和時間的復雜度問題將是非常重要的一個環節。對于描述型的分類任務,模型描述越簡潔越受歡迎。例如,采用規則歸納法表示的分類器構造法就很有用,而神經網絡方法產生的結果就難以理解。

另外要注意的是,分類的效果一般和數據的特點有關。有的數據噪聲大,有的有缺值, 有的分布稀疏,有的字段或屬性間相關性強,有的屬性是離散的而有的是連續值或混合式的。目前普遍認為不存在某種方法能適合于各種特點的數據。

分類技術在實際應用非常重要,比如:可以根據房屋的地理位置決定房屋的檔次等。

2. 2 聚類分析

聚類是指根據“物以類聚”的原理,將本身沒有類別的樣本聚集成不同的組,并且對每一個這樣的組進行描述的過程。它的目的是使得屬于同一個組的樣本之間應該彼此相似,而不同組的樣本應足夠不相似。與分類分析不同,進行聚類前并不知道將要劃分成幾個組和什么樣的組,也不知道根據哪些空間區分規則來定義組。其目的旨在發現空間實體的屬性間的函數關系,挖掘的知識用以屬性名為變量的數學方程來表示。聚類方法包括統計方法、機器學習方法、神經網絡方法和面向數據庫的方法。基于聚類分析方法的空間數據挖掘算法包括均值近似算法[4]、CLARANS、BIRCH、DBSCAN等算法。目前,對空間數據聚類分析方法的研究是一個熱點。

對于空間數據,利用聚類分析方法,可以根據地理位置以及障礙物的存在情況自動地進行區域劃分。例如,根據分布在不同地理位置的ATM機的情況將居民進行區域劃分,根據這一信息,可以有效地進行ATM機的設置規劃,避免浪費,同時也避免失掉每一個商機。

2.3 關聯規則分析

關聯規則分析主要用于發現不同事件之間的關聯性,即一事物發生時,另一事物也經常發生。關聯分析的重點在于快速發現那些有實用價值的關聯發生的事件。其主要依據是:事件發生的概率和條件概率應該符合一定的統計意義。空間關聯規則的形式是X->Y[S%,C%],其中X、Y是空間或非空間謂詞的集合,S%表示規則的支持度,C%表示規則的置信度。空間謂詞的形式有3種:表示拓撲結構的謂詞、表示空間方向的謂詞和表示距離的謂詞[5]。各種各樣的空間謂詞可以構成空間關聯規則。如,距離信息(如Close_to(臨近)、Far_away(遠離))、拓撲關系(Intersect(交)、Overlap(重疊)、Disjoin(分離))和空間方位(如Right_of(右邊)、West_of(西邊))。實際上大多數算法都是利用空間數據的關聯特性改進其分類算法,使得它適合于挖掘空間數據中的相關性,從而可以根據一個空間實體而確定另一個空間實體的地理位置,有利于進行空間位置查詢和重建空間實體等。大致算法可描述如下:(1)根據查詢要求查找相關的空間數據;(2)利用臨近等原則描述空間屬性和特定屬性;(3)根據最小支持度原則過濾不重要的數據;(4)運用其它手段對數據進一步提純(如OVERLAY);(5)生成關聯規則。

關聯規則通常可分為兩種:布爾型的關聯規則和多值關聯規則。多值關聯規則比較復雜,一種自然的想法是將它轉換為布爾型關聯規則,由于空間關聯規則的挖掘需要在大量的空間對象中計算多種空間關系,因此其代價是很高的。—種逐步求精的挖掘優化方法可用于空間關聯的分析,該方法首先用一種快速的算法粗略地對一個較大的數據集進行一次挖掘,然后在裁減過的數據集上用代價較高的算法進一步改進挖掘的質量。因為其代價非常高,所以空間的關聯方法需要進一步的優化。

對于空間數據,利用關聯規則分析,可以發現地理位置的關聯性。例如,85%的靠近高速公路的大城鎮與水相鄰,或者發現通常與高爾夫球場相鄰的對象是停車場等。

3 空間數據挖掘技術的研究方向

3.1 處理不同類型的數據

絕大多數數據庫是關系型的,因此在關系數據庫上有效地執行數據挖掘是至關重要的。但是在不同應用領域中存在各種數據和數據庫,而且經常包含復雜的數據類型,例如結構數據、復雜對象、事務數據、歷史數據等。由于數據類型的多樣性和不同的數據挖掘目標,一個數據挖掘系統不可能處理各種數據。因此針對特定的數據類型,需要建立特定的數據挖掘系統。

3.2 數據挖掘算法的有效性和可測性

海量數據庫通常有上百個屬性和表及數百萬個元組。GB數量級數據庫已不鮮見,TB數量級數據庫已經出現,高維大型數據庫不僅增大了搜索空間,也增加了發現錯誤模式的可能性。因此必須利用領域知識降低維數,除去無關數據,從而提高算法效率。從一個大型空間數據庫中抽取知識的算法必須高效、可測量,即數據挖掘算法的運行時間必須可預測,且可接受,指數和多項式復雜性的算法不具有實用價值。但當算法用有限數據為特定模型尋找適當參數時,有時也會導致物超所值,降低效率。

3.3 交互性用戶界面

數據挖掘的結果應準確地描述數據挖掘的要求,并易于表達。從不同的角度考察發現的知識,并以不同形式表示,用高層次語言和圖形界面表示數據挖掘要求和結果。目前許多知識發現系統和工具缺乏與用戶的交互,難以有效利用領域知識。對此可以利用貝葉斯方法和演譯數據庫本身的演譯能力發現知識。

3.4 在多抽象層上交互式挖掘知識

很難預測從數據庫中會挖掘出什么樣的知識,因此一個高層次的數據挖掘查詢應作為進一步探詢的線索。交互式挖掘使用戶能交互地定義一個數據挖掘要求,深化數據挖掘過程,從不同角度靈活看待多抽象層上的數據挖掘結果。

3.5 從不同數據源挖掘信息

局域網、廣域網以及Internet網將多個數據源聯成一個大型分布、異構的數據庫,從包含不同語義的格式化和非格式化數據中挖掘知識是對數據挖掘的一個挑戰。數據挖掘可揭示大型異構數據庫中存在的普通查詢不能發現的知識。數據庫的巨大規模、廣泛分布及數據挖掘方法的計算復雜性,要求建立并行分布的數據挖掘。

3.6 私有性和安全性

數據挖掘能從不同角度、不同抽象層上看待數據,這將影響到數據挖掘的私有性和安全性。通過研究數據挖掘導致的數據非法侵入,可改進數據庫安全方法,以避免信息泄漏。

3.7 和其它系統的集成

方法、功能單一的發現系統的適用范圍必然受到一定的限制。要想在更廣泛的領域發現知識,空間數據挖掘系統就應該是數據庫、知識庫、專家系統、決策支持系統、可視化工具、網絡等技術的集成。

4 有待研究的問題

我們雖然在空間數據挖掘技術的研究和應用中取得了很大的成績,但在一些理論及應用方面仍存在急需解決的問題。

4.1 數據訪問的效率和可伸縮性

空間數據的復雜性和數據的大量性,TB數量級的數據庫的出現,必然增大發現算法的搜索空間,增加了搜索的盲目性。如何有效的去除與任務無關的數據,降低問題的維數,設計出更加高效的挖掘算法對空間數據挖掘提出了巨大的挑戰。

4.2 對當前一些GIS軟件缺乏時間屬性和靜態存儲的改進

由于數據挖掘的應用在很大的程度上涉及到時序關系,因此靜態的數據存儲嚴重妨礙了數據挖掘的應用。基于圖層的計算模式、不同尺度空間數據之間的完全割裂也對空間數據挖掘設置了重重障礙。空間實體與屬性數據之間的聯系僅僅依賴于標識碼,這種一維的連接方式無疑將丟失大量的連接信息,不能有效的表示多維和隱含的內在連接關系,這些都增加了數據挖掘計算的復雜度,極大地增加了數據準備階段的工作量和人工干預的程度。

4.3 發現模式的精煉

當發現空間很大時會獲得大量的結果,盡管有些是無關或沒有意義的模式,這時可利用領域的知識進一步精煉發現的模式,從而得到有意義的知識。

在空間數據挖掘技術方面,重要的研究和應用的方向還包括:網絡環境上的數據挖掘、柵格矢量一體化的挖掘、不確定性情況下的數據挖掘、分布式環境下的數據挖掘、數據挖掘查詢語言和新的高效的挖掘算法等。

5 小結

隨著GIS與數據挖掘及相關領域科學研究的不斷發展,空間數據挖掘技術在廣度和深度上的不斷深入,在不久的將來,一個集成了挖掘技術的GIS、GPS、RS集成系統必將朝著智能化、網絡化、全球化與大眾化的方向發展。

在ArcGIS中,關聯與連接的聯系與區別?

主要有兩個區別:

1、連接關系不一樣。Relate(關聯連接)方式連接的兩個表之間的記錄可以是“一對一”、“多對一”、“一對多”的關系,而Join(合并連接)方式連接的兩個表之間的記錄只能是“一對一”、“多對一”的關系,不能實現“一對多”的合并。

2、顯示不一樣。Relat實現兩個表連接后,外觀任然是兩個獨立的表,一個表的記錄進入選擇集時,另一個表中的記錄也同步進入選擇集。分別顯示在各自的窗口中。join實現兩個表連接后,被連接的表合并到結果集中,結果表的字段得到擴展,表的顯示比較緊湊、簡潔,查詢操作也較簡單。

GIS是什么意思?

GIS系統即地理信息系統 (GIS, Geographic Information System) 是一種基于計算機的工具,它可以對在地球上存在的東西和發生的事件進行成圖和分析。 GIS 技術把地圖這種獨特的視覺化效果和地理分析功能與一般的數據庫操作(例如查詢和統計分析等)集成在一起。這種能力使 GIS與其他信息系統相區別,從而使其在廣泛的公眾和個人企事業單位中解釋事件、預測結果、規劃戰略等中具有實用價值。

地理信息系統是隨著地理科學、計算機技術、遙感技術和信息科學的發展而發展起來的一個學科。在計算機發展史上,在計算機發展史上,計算機輔助設計技術(CAD)的出現使人們可以用計算機處理象圖形這樣的數據,圖形數據的標志之一就是圖形元素有明確的位置坐標,不同圖形之間有各種各樣的拓撲關系。簡單地說,拓撲關系指圖形元素之間的空間位置和連接關系。簡單的圖形元素如點、線、多邊形等;點有坐標(x, y);線可以看成由無數點組成,線的位置就可以表示為一系列坐標對(x1, y1),(x2, y2),……(xn, yn);平面上的多邊形可以認為是由閉合曲線形成范圍。圖形元素之間有多種多樣的相互關系,如一個點在一條線上或在一個多邊形內,一條線穿過一個多邊形等等。在實際應用中,一個地理信息系統要管理非常多、非常復雜的數據,可能有幾萬個多邊形,幾萬條線,上萬個點,還要計算和管理它們之間的各種復雜的空間關系……。

地理信息系統是將計算機硬件、軟件、地理數據以及系統管理人員組織而成的對任一形式的地理信息進行高效獲取、存儲、更新、操作、分析及顯示的集成。

地理信息系統技術廣泛應用于農業、林業、國土資源、地礦、軍事、交通、測繪、水利、廣播電視、通訊、電力、公安、社區管理、教育、能源等幾乎所有的行業,并正在走進人們日常的工作、學習和生活中。

地理信息系統的主要計算機硬件是工作站和微機。 地理信息系統的主要計算機操作系統軟件是UNIX、Windows9X、Windows NT、Windows2000、Macintosh等。

地理信息系統的主要計算機應用軟件是ARC/INFO、MGE、GeoMedia、GenaMap、MapInfo、AutoDesk Map、ArcView、MapObjects、MapX、Maptitude、MapGIS、GeoStar、MapEngine等。

地理信息系統的主要基礎地理數據比例尺為1:400萬、1:100萬、1:25萬、1:5萬、1:1萬、1:2000、1:1000和1:500等;基礎地理數據種類為數字線劃圖(DLG)、數字柵格圖(DRG)、數字正射影象圖(DOQ)和數字高程模型(DEM)等。

GIS 地理信息系統相關技術

GIS與其他幾種信息系統密切相關,但由于其處理和分析地理數據的能力使其與它們相區別。盡管沒有什么硬性的和快速的規則來給這些信息系統分類,但下面的討論可以幫助區分GIS和桌面制圖、計算機輔助設計CAD、遙感、DBMS、以及GPS技術。

桌面制圖

桌面制圖系統用地圖來組織數據和用戶交互。這種系統的主要目的是產生地圖:地圖就是數據庫。大多數桌面制圖系統只有及其有限的數據管理、空間分析以及個性化能力。桌面制圖系統在桌面計算機上進行操作,例如PC機,Macintosh以及小型UNIX工作站。

計算機輔助設計CAD

計算機輔助設計(CAD)系統促進了產生建筑物和基本建設的設計和規劃。這種設計需要裝配固有特征的組件來產生整個結構。這些系統需要一些規則來指明如何裝配這些部件,并具有非常有限的分析能力。CAD系統已經擴展可以支持地圖設計,但管理和分析大型的地理數據庫的工具很有限。

遙感和GPS

遙感是一門使用傳感器對地球進行測量的科學和技術,例如,飛機上的照相機,全球定位系統(GPS)接收器,或其他設備。這些傳感器以圖象的格式收集數據,并為利用、分析和可視化這些圖象提供專門的功能。由于它缺乏強大的地理數據管理和分析作用,所以不能叫作真正的GIS。

DBMS數據庫管理系統

數據庫管理系統專門研究如何存儲和管理所有類型的數據,其中包括地理數據。DBMS使存儲和查找數據最優化,許多GIS為此而依靠它。相對于GIS而言,它們沒有分析和可視化的工具。

分享名稱:gis關聯技術 arcgis關聯和連接的區別
當前網址:http://www.yijiale78.com/article38/ddosdsp.html

成都網站建設公司_創新互聯,為您提供Google域名注冊品牌網站建設微信公眾號小程序開發

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

成都app開發公司