這期內(nèi)容當中小編將會給大家?guī)碛嘘P怎么在pandas中使用box_plot去除異常值,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

#-*- coding:utf-8 _*-
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
import os
import seaborn as sns
from sklearn.preprocessing import StandardScaler
'''
通過box_plot(盒圖來確認)異常值
'''
# 獲取項目根目錄
input_data_path = os.path.dirname(os.path.dirname(os.getcwd())) + '/input/'
print(input_data_path)
# 獲取數(shù)據(jù)得位置
month_6_train_path = input_data_path +'month_6_1.csv'
month_6_test_path = input_data_path + 'test_data_6_1.csv'
# 讀取數(shù)據(jù)
data_train = pd.read_csv(month_6_train_path)
data_test = pd.read_csv(month_6_test_path)
# print(data_train.head())
# print(data_test.head())
# 暫時不考慮省份城市地址
# 月份只有一個月,暫時不考慮
# bedrooms 需要看成分類型得數(shù)據(jù)
# 只取出longitude,latitude,price,buildingTypeId,bedrooms,daysOnMarket
# 取出這些數(shù)據(jù);
# train = data_train[['longitude', 'latitude', 'price', 'buildingTypeId', 'bedrooms', 'daysOnMarket']]
# train= train.dropna()
train = data_test[['longitude', 'latitude', 'price', 'buildingTypeId', 'bedrooms', 'daysOnMarket']]
print(train.head())
# print(test.head())
# print(train.isna().sum())
# sns.pairplot(train)
# # sns.pairplot(test)
# plt.show()
# 特征清洗:異常值清理用用箱圖;
# 分為兩步走,一步是單列異常值處理,
# 第二步是多列分組異常值處理
def remove_filers_with_boxplot(data):
p = data.boxplot(return_type='dict')
for index,value in enumerate(data.columns):
# 獲取異常值
fliers_value_list = p['fliers'][index].get_ydata()
# 刪除異常值
for flier in fliers_value_list:
data = data[data.loc[:,value] != flier]
return data
print(train.shape)
train = remove_filers_with_boxplot(train)
print(train.shape)
'''
以上得異常值處理還不夠完善,
完善的異常值處理是分組判斷異常值,
也就是他在單獨這一列種,還有一種情況是多余不同的分類,他是不是存在異常
所以就需要用到分組獲取數(shù)據(jù)再箱圖處理掉異常數(shù)據(jù);
'''
train = train[pd.isna(train.buildingTypeId) != True]
print(train.shape)
print(train['bedrooms'].value_counts())
'''
3.0 8760
2.0 5791
4.0 5442
1.0 2056
5.0 1828
6.0 429
0.0 159
7.0 82
由于樣本存在不均衡得問題:所以只采用12345數(shù)據(jù):也就是說去掉0,7,6,到時候測試數(shù)據(jù)也要做相同得操作;
還有一種是通過下采樣或者是上采樣的方式進行,這里暫時不考慮;
'''
# 只取bedrooms 為1,2,3,4,5 得數(shù)據(jù)
train = train[train['bedrooms'].isin([1,2,3,4,5])]
print(train.shape)
# 利用pivot分組后去掉異常點
def use_pivot_box_to_remove_fliers(data,pivot_columns_list,pivot_value_list):
for column in pivot_columns_list:
for value in pivot_value_list:
# 獲取分組的dataframe
new_data = data.pivot(columns=column,values=value)
p = new_data.boxplot(return_type='dict')
for index,value_new in enumerate(new_data.columns):
# 獲取異常值
fliers_value_list = p['fliers'][index].get_ydata()
# 刪除異常值
for flier in fliers_value_list:
data = data[data.loc[:, value] != flier]
return data
# train = use_pivot_box_to_remove_fliers(train,['buildingTypeId','bedrooms'],['price','daysOnMarket','longitude','latitude'])
print(train.shape)
# print(train.isna().sum())
# 以上就不考慮longitude和latitude的問題了;應為房屋的類型以及房間個數(shù)和經(jīng)緯度關系不大,但是也不一定,
# 實踐了一下加上longitude和latitude之后樣本數(shù)據(jù)并沒有減少;
# sns.pairplot(train)
# plt.show()
# 先進一步做處理將緯度小于40的去掉
train = train[train.latitude>40]
# --------------------------------》》》
# 對于數(shù)值類型得用均值填充,但是在填充之前注意一些原本就是分類型數(shù)據(jù)得列
# def fill_na(data):
# for column in data.columns:
# if column.dtype != str:
# data[column].fillna(data[column].mean())
# return data
# 以上是異常值,或者是離群點的處理,以及均值填充數(shù)據(jù)
# 下面將根據(jù)catter圖或者是hist圖來處理數(shù)據(jù)
# # 標準化數(shù)據(jù)
# train = StandardScaler().fit_transform(train)
# # 標準化之后畫圖發(fā)現(xiàn)數(shù)據(jù)分布并沒有變
#
# sns.pairplot(pd.DataFrame(train))
# plt.show()
'''
1:循環(huán)遍歷整個散點圖用剛才寫好的算法去除點;
'''
# 獲取
# def get_outlier(x,y,init_point_count ,distance,least_point_count):
# x_outliers_list = []
# y_outliers_list = []
# for i in range(len(x)):
# for j in range(len(x)):
# d =np.sqrt(np.square(x[i]-x[j])+np.square(y[i]-y[j]))
# # print('距離',d)
# if d <= distance:
# init_point_count +=1
# if init_point_count <least_point_count+1:
# x_outliers_list.append(x[i])
# y_outliers_list.append(y[i])
# print(x[i],y[i])
# init_point_count =0
# return x_outliers_list,y_outliers_list
#
# def circulation_to_remove_outliers(data,list_columns=['longitude','latitude','price','daysOnMarket',]):
# for column_row in list_columns:
# for column_col in list_columns:
# if column_row != column_col:
# x = list(data[column_row])
# y = list(data[column_col])
# x_outliers_list ,y_outliers_list = get_outlier(x,y,0,0.01,2)
# for x_outlier in x_outliers_list:
# data = data[data.loc[:, column_row] != x_outlier]
# for y_outlier in y_outliers_list:
# data = data[data.loc[:, column_col] != y_outlier]
# return data
#
# train = circulation_to_remove_outliers(train)
#
# print(train.shape)
# def get_outlier(x,y,init_point_count ,distance,least_point_count):
# for i in range(len(x)):
# for j in range(len(x)):
# d =np.sqrt(np.square(x[i]-x[j])+np.square(y[i]-y[j]))
# # print('距離',d)
# if d <= distance:
# init_point_count +=1
# if init_point_count <least_point_count+1:
# print(x[i],y[i])
# init_point_count =0
#
# get_outlier(train['longitude'],train['latitude'],0,0.3,1)
# sns.pairplot(train)
# plt.show()
# train = train.dropna()
# print(train.tail())
# train.to_csv('./finnl_processing_train_data_6_no_remove_outliers_test.csv',index=False)上述就是小編為大家分享的怎么在pandas中使用box_plot去除異常值了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道。
網(wǎng)站標題:怎么在pandas中使用box_plot去除異常值-創(chuàng)新互聯(lián)
文章出自:http://www.yijiale78.com/article42/cegoec.html
成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供移動網(wǎng)站建設、動態(tài)網(wǎng)站、網(wǎng)站收錄、建站公司、企業(yè)網(wǎng)站制作、云服務器
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容