99偷拍视频精品区一区二,口述久久久久久久久久久久,国产精品夫妇激情啪发布,成人永久免费网站在线观看,国产精品高清免费在线,青青草在线观看视频观看,久久久久久国产一区,天天婷婷久久18禁,日韩动漫av在线播放直播

python找對象函數 Python中對象

Python如何通過字符或數字動態獲取對象的名稱或者屬性?

首先通過一個例子來看一下本文中可能用到的對象和相關概念。

創新互聯是一家從事企業網站建設、網站設計制作、網站制作、行業門戶網站建設、網頁設計制作的專業的建站公司,擁有經驗豐富的網站建設工程師和網頁設計人員,具備各種規模與類型網站建設的實力,在網站建設領域樹立了自己獨特的設計風格。自公司成立以來曾獨立設計制作的站點上千家。

#coding: UTF-8

import sys # 模塊,sys指向這個模塊對象

import inspect

def foo(): pass # 函數,foo指向這個函數對象

class Cat(object): # 類,Cat指向這個類對象

def __init__(self, name='kitty'):

self.name = name

def sayHi(self): # 實例方法,sayHi指向這個方法對象,使用類或實例.sayHi訪問

print self.name, 'says Hi!' # 訪問名為name的字段,使用實例.name訪問

cat = Cat() # cat是Cat類的實例對象

print Cat.sayHi # 使用類名訪問實例方法時,方法是未綁定的(unbound)

print cat.sayHi # 使用實例訪問實例方法時,方法是綁定的(bound)

有時候我們會碰到這樣的需求,需要執行對象的某個方法,或是需要對對象的某個字段賦值,而方法名或是字段名在編碼代碼時并不能確定,需要通過參數傳遞字符串的形式輸入。舉個具體的例子:當我們需要實現一個通用的DBM框架時,可能需要對數據對象的字段賦值,但我們無法預知用到這個框架的數據對象都有些什么字段,換言之,我們在寫框架的時候需要通過某種機制訪問未知的屬性。

這個機制被稱為反射(反過來讓對象告訴我們他是什么),或是自省(讓對象自己告訴我們他是什么,好吧我承認括號里是我瞎掰的- -#),用于實現在運行時獲取未知對象的信息。反射是個很嚇唬人的名詞,聽起來高深莫測,在一般的編程語言里反射相對其他概念來說稍顯復雜,一般來說都是作為高級主題來講;但在Python中反射非常簡單,用起來幾乎感覺不到與其他的代碼有區別,使用反射獲取到的函數和方法可以像平常一樣加上括號直接調用,獲取到類后可以直接構造實例;不過獲取到的字段不能直接賦值,因為拿到的其實是另一個指向同一個地方的引用,賦值只能改變當前的這個引用而已。

1. 訪問對象的屬性

以下列出了幾個內建方法,可以用來檢查或是訪問對象的屬性。這些方法可以用于任意對象而不僅僅是例子中的Cat實例對象;Python中一切都是對象。

cat = Cat('kitty')

print cat.name # 訪問實例屬性

cat.sayHi() # 調用實例方法

print dir(cat) # 獲取實例的屬性名,以列表形式返回

if hasattr(cat, 'name'): # 檢查實例是否有這個屬性

setattr(cat, 'name', 'tiger') # same as: a.name = 'tiger'

print getattr(cat, 'name') # same as: print a.name

getattr(cat, 'sayHi')() # same as: cat.sayHi()

dir([obj]):

調用這個方法將返回包含obj大多數屬性名的列表(會有一些特殊的屬性不包含在內)。obj的默認值是當前的模塊對象。

hasattr(obj, attr):

這個方法用于檢查obj是否有一個名為attr的值的屬性,返回一個布爾值。

getattr(obj, attr):

調用這個方法將返回obj中名為attr值的屬性的值,例如如果attr為'bar',則返回obj.bar。

setattr(obj, attr, val):

調用這個方法將給obj的名為attr的值的屬性賦值為val。例如如果attr為'bar',則相當于obj.bar = val。

2. 訪問對象的元數據

當你對一個你構造的對象使用dir()時,可能會發現列表中的很多屬性并不是你定義的。這些屬性一般保存了對象的元數據,比如類的__name__屬性保存了類名。大部分這些屬性都可以修改,不過改動它們意義并不是很大;修改其中某些屬性如function.func_code還可能導致很難發現的問題,所以改改name什么的就好了,其他的屬性不要在不了解后果的情況下修改。

接下來列出特定對象的一些特殊屬性。另外,Python的文檔中有提到部分屬性不一定會一直提供,下文中將以紅色的星號*標記,使用前你可以先打開解釋器確認一下。

2.0. 準備工作:確定對象的類型

在types模塊中定義了全部的Python內置類型,結合內置方法isinstance()就可以確定對象的具體類型了。

isinstance(object, classinfo):

檢查object是不是classinfo中列舉出的類型,返回布爾值。classinfo可以是一個具體的類型,也可以是多個類型的元組或列表。

types模塊中僅僅定義了類型,而inspect模塊中封裝了很多檢查類型的方法,比直接使用types模塊更為輕松,所以這里不給出關于types的更多介紹,如有需要可以直接查看types模塊的文檔說明。本文第3節中介紹了inspect模塊。

2.1. 模塊(module)

__doc__: 文檔字符串。如果模塊沒有文檔,這個值是None。

*__name__: 始終是定義時的模塊名;即使你使用import .. as 為它取了別名,或是賦值給了另一個變量名。

*__dict__: 包含了模塊里可用的屬性名-屬性的字典;也就是可以使用模塊名.屬性名訪問的對象。

__file__: 包含了該模塊的文件路徑。需要注意的是內建的模塊沒有這個屬性,訪問它會拋出異常!

import fnmatch as m

print m.__doc__.splitlines()[0] # Filename matching with shell patterns.

print m.__name__ # fnmatch

print m.__file__ # /usr/lib/python2.6/fnmatch.pyc

print m.__dict__.items()[0] # ('fnmatchcase', function fnmatchcase="" at="" 0xb73deb54="")/function

2.2. 類(class)

__doc__: 文檔字符串。如果類沒有文檔,這個值是None。

*__name__: 始終是定義時的類名。

*__dict__: 包含了類里可用的屬性名-屬性的字典;也就是可以使用類名.屬性名訪問的對象。

__module__: 包含該類的定義的模塊名;需要注意,是字符串形式的模塊名而不是模塊對象。

*__bases__: 直接父類對象的元組;但不包含繼承樹更上層的其他類,比如父類的父類。

print Cat.__doc__ # None

print Cat.__name__ # Cat

print Cat.__module__ # __main__

print Cat.__bases__ # (type ?object?="",)

print Cat.__dict__ # {'__module__': '__main__', ...}/type

2.3. 實例(instance)

實例是指類實例化以后的對象。

*__dict__: 包含了可用的屬性名-屬性字典。

*__class__: 該實例的類對象。對于類Cat,cat.__class__ == Cat 為 True。

print cat.__dict__

print cat.__class__

print cat.__class__ == Cat # True

2.4. 內建函數和方法(built-in functions and methods)

根據定義,內建的(built-in)模塊是指使用C寫的模塊,可以通過sys模塊的builtin_module_names字段查看都有哪些模塊是內建的。這些模塊中的函數和方法可以使用的屬性比較少,不過一般也不需要在代碼中查看它們的信息。

__doc__: 函數或方法的文檔。

__name__: 函數或方法定義時的名字。

__self__: 僅方法可用,如果是綁定的(bound),則指向調用該方法的類(如果是類方法)或實例(如果是實例方法),否則為None。

*__module__: 函數或方法所在的模塊名。

2.5. 函數(function)

這里特指非內建的函數。注意,在類中使用def定義的是方法,方法與函數雖然有相似的行為,但它們是不同的概念。

__doc__: 函數的文檔;另外也可以用屬性名func_doc。

__name__: 函數定義時的函數名;另外也可以用屬性名func_name。

*__module__: 包含該函數定義的模塊名;同樣注意,是模塊名而不是模塊對象。

*__dict__: 函數的可用屬性;另外也可以用屬性名func_dict。

不要忘了函數也是對象,可以使用函數.屬性名訪問屬性(賦值時如果屬性不存在將新增一個),或使用內置函數has/get/setattr()訪問。不過,在函數中保存屬性的意義并不大。

func_defaults: 這個屬性保存了函數的參數默認值元組;因為默認值總是靠后的參數才有,所以不使用字典的形式也是可以與參數對應上的。

func_code: 這個屬性指向一個該函數對應的code對象,code對象中定義了其他的一些特殊屬性,將在下文中另外介紹。

func_globals: 這個屬性指向當前的全局命名空間而不是定義函數時的全局命名空間,用處不大,并且是只讀的。

*func_closure: 這個屬性僅當函數是一個閉包時有效,指向一個保存了所引用到的外部函數的變量cell的元組,如果該函數不是一個內部函數,則始終為None。這個屬性也是只讀的。

下面的代碼演示了func_closure:

#coding: UTF-8

def foo():

n = 1

def bar():

print n # 引用非全局的外部變量n,構造一個閉包

n = 2

return bar

closure = foo()

print closure.func_closure

# 使用dir()得知cell對象有一個cell_contents屬性可以獲得值

print closure.func_closure[0].cell_contents # 2

由這個例子可以看到,遇到未知的對象使用dir()是一個很好的主意 :)

2.6. 方法(method)

方法雖然不是函數,但可以理解為在函數外面加了一層外殼;拿到方法里實際的函數以后,就可以使用2.5節的屬性了。

__doc__: 與函數相同。

__name__: 與函數相同。

*__module__: 與函數相同。

im_func: 使用這個屬性可以拿到方法里實際的函數對象的引用。另外如果是2.6以上的版本,還可以使用屬性名__func__。

im_self: 如果是綁定的(bound),則指向調用該方法的類(如果是類方法)或實例(如果是實例方法),否則為None。如果是2.6以上的版本,還可以使用屬性名__self__。

im_class: 實際調用該方法的類,或實際調用該方法的實例的類。注意不是方法的定義所在的類,如果有繼承關系的話。

im = cat.sayHi

print im.im_func

print im.im_self # cat

print im.im_class # Cat

這里討論的是一般的實例方法,另外還有兩種特殊的方法分別是類方法(classmethod)和靜態方法(staticmethod)。類方法還是方法,不過因為需要使用類名調用,所以他始終是綁定的;而靜態方法可以看成是在類的命名空間里的函數(需要使用類名調用的函數),它只能使用函數的屬性,不能使用方法的屬性。

2.7. 生成器(generator)

生成器是調用一個生成器函數(generator function)返回的對象,多用于集合對象的迭代。

__iter__: 僅僅是一個可迭代的標記。

gi_code: 生成器對應的code對象。

gi_frame: 生成器對應的frame對象。

gi_running: 生成器函數是否在執行。生成器函數在yield以后、執行yield的下一行代碼前處于frozen狀態,此時這個屬性的值為0。

next|close|send|throw: 這是幾個可調用的方法,并不包含元數據信息,如何使用可以查看生成器的相關文檔。

def gen():

for n in xrange(5):

yield n

g = gen()

print g # generator object gen at 0x...

print g.gi_code # code object gen at 0x...

print g.gi_frame # frame object at 0x...

print g.gi_running # 0

print g.next() # 0

print g.next() # 1

for n in g:

print n, # 2 3 4

接下來討論的是幾個不常用到的內置對象類型。這些類型在正常的編碼過程中應該很少接觸,除非你正在自己實現一個解釋器或開發環境之類。所以這里只列出一部分屬性,如果需要一份完整的屬性表或想進一步了解,可以查看文末列出的參考文檔。

2.8. 代碼塊(code)

代碼塊可以由類源代碼、函數源代碼或是一個簡單的語句代碼編譯得到。這里我們只考慮它指代一個函數時的情況;2.5節中我們曾提到可以使用函數的func_code屬性獲取到它。code的屬性全部是只讀的。

co_argcount: 普通參數的總數,不包括*參數和**參數。

co_names: 所有的參數名(包括*參數和**參數)和局部變量名的元組。

co_varnames: 所有的局部變量名的元組。

co_filename: 源代碼所在的文件名。

co_flags: 這是一個數值,每一個二進制位都包含了特定信息。較關注的是0b100(0×4)和0b1000(0×8),如果co_flags 0b100 != 0,說明使用了*args參數;如果co_flags 0b1000 != 0,說明使用了**kwargs參數。另外,如果co_flags 0b100000(0×20) != 0,則說明這是一個生成器函數(generator function)。

co = cat.sayHi.func_code

print co.co_argcount # 1

print co.co_names # ('name',)

print co.co_varnames # ('self',)

print co.co_flags 0b100 # 0

2.9. 棧幀(frame)

棧幀表示程序運行時函數調用棧中的某一幀。函數沒有屬性可以獲取它,因為它在函數調用時才會產生,而生成器則是由函數調用返回的,所以有屬性指向棧幀。想要獲得某個函數相關的棧幀,則必須在調用這個函數且這個函數尚未返回時獲取。你可以使用sys模塊的_getframe()函數、或inspect模塊的currentframe()函數獲取當前棧幀。這里列出來的屬性全部是只讀的。

f_back: 調用棧的前一幀。

f_code: 棧幀對應的code對象。

f_locals: 用在當前棧幀時與內建函數locals()相同,但你可以先獲取其他幀然后使用這個屬性獲取那個幀的locals()。

f_globals: 用在當前棧幀時與內建函數globals()相同,但你可以先獲取其他幀……。

def add(x, y=1):

f = inspect.currentframe()

print f.f_locals # same as locals()

print f.f_back # frame object at 0x...

return x+y

add(2)

2.10. 追蹤(traceback)

追蹤是在出現異常時用于回溯的對象,與棧幀相反。由于異常時才會構建,而異常未捕獲時會一直向外層棧幀拋出,所以需要使用try才能見到這個對象。你可以使用sys模塊的exc_info()函數獲得它,這個函數返回一個元組,元素分別是異常類型、異常對象、追蹤。traceback的屬性全部是只讀的。

tb_next: 追蹤的下一個追蹤對象。

tb_frame: 當前追蹤對應的棧幀。

tb_lineno: 當前追蹤的行號。

def div(x, y):

try:

return x/y

except:

tb = sys.exc_info()[2] # return (exc_type, exc_value, traceback)

print tb

print tb.tb_lineno # "return x/y" 的行號

div(1, 0)

3. 使用inspect模塊

inspect模塊提供了一系列函數用于幫助使用自省。下面僅列出較常用的一些函數,想獲得全部的函數資料可以查看inspect模塊的文檔。

3.1. 檢查對象類型

is{module|class|function|method|builtin}(obj):

檢查對象是否為模塊、類、函數、方法、內建函數或方法。

isroutine(obj):

用于檢查對象是否為函數、方法、內建函數或方法等等可調用類型。用這個方法會比多個is*()更方便,不過它的實現仍然是用了多個is*()。

im = cat.sayHi

if inspect.isroutine(im):

im()

對于實現了__call__的類實例,這個方法會返回False。如果目的是只要可以直接調用就需要是True的話,不妨使用isinstance(obj, collections.Callable)這種形式。我也不知道為什么Callable會在collections模塊中,抱歉!我猜大概是因為collections模塊中包含了很多其他的ABC(Abstract Base Class)的緣故吧:)

3.2. 獲取對象信息

getmembers(object[, predicate]):

這個方法是dir()的擴展版,它會將dir()找到的名字對應的屬性一并返回,形如[(name, value), ...]。另外,predicate是一個方法的引用,如果指定,則應當接受value作為參數并返回一個布爾值,如果為False,相應的屬性將不會返回。使用is*作為第二個參數可以過濾出指定類型的屬性。

getmodule(object):

還在為第2節中的__module__屬性只返回字符串而遺憾嗎?這個方法一定可以滿足你,它返回object的定義所在的模塊對象。

get{file|sourcefile}(object):

獲取object的定義所在的模塊的文件名|源代碼文件名(如果沒有則返回None)。用于內建的對象(內建模塊、類、函數、方法)上時會拋出TypeError異常。

get{source|sourcelines}(object):

獲取object的定義的源代碼,以字符串|字符串列表返回。代碼無法訪問時會拋出IOError異常。只能用于module/class/function/method/code/frame/traceack對象。

getargspec(func):

僅用于方法,獲取方法聲明的參數,返回元組,分別是(普通參數名的列表, *參數名, **參數名, 默認值元組)。如果沒有值,將是空列表和3個None。如果是2.6以上版本,將返回一個命名元組(Named Tuple),即除了索引外還可以使用屬性名訪問元組中的元素。

def add(x, y=1, *z):

return x + y + sum(z)

print inspect.getargspec(add)

#ArgSpec(args=['x', 'y'], varargs='z', keywords=None, defaults=(1,))

getargvalues(frame):

僅用于棧幀,獲取棧幀中保存的該次函數調用的參數值,返回元組,分別是(普通參數名的列表, *參數名, **參數名, 幀的locals())。如果是2.6以上版本,將返回一個命名元組(Named Tuple),即除了索引外還可以使用屬性名訪問元組中的元素。

def add(x, y=1, *z):

print inspect.getargvalues(inspect.currentframe())

return x + y + sum(z)

add(2)

#ArgInfo(args=['x', 'y'], varargs='z', keywords=None, locals={'y': 1, 'x': 2, 'z': ()})

getcallargs(func[, *args][, **kwds]):

返回使用args和kwds調用該方法時各參數對應的值的字典。這個方法僅在2.7版本中才有。

getmro(cls):

返回一個類型元組,查找類屬性時按照這個元組中的順序。如果是新式類,與cls.__mro__結果一樣。但舊式類沒有__mro__這個屬性,直接使用這個屬性會報異常,所以這個方法還是有它的價值的。

print inspect.getmro(Cat)

#(class '__main__.Cat', type 'object')

print Cat.__mro__

#(class '__main__.Cat', type 'object')

Python對象

眾所周知,Python是一門面向對象的語言,在Python無論是數值、字符串、函數亦或是類型、類,都是對象。

對象是在 堆 上分配的結構,我們定義的所有變量、函數等,都存儲于堆內存,而變量名、函數名則是一個存儲于 棧 中、指向堆中具體結構的引用。

要想深入學習Python,首先需要知道Python對象的定義。

我們通常說的Python都是指CPython,底層由C語言實現,源碼地址: cpython [GitHub]

Python對象的定義位于 Include/object.h ,是一個名為 PyObject 的結構體:

Python中的所有對象都繼承自PyObejct,PyObject包含一個用于垃圾回收的雙向鏈表,一個引用計數變量 ob_refcnt 和 一個類型對象指針 ob_type

從PyObejct的注釋中,我們可以看到這樣一句:每個指向 可變大小Python對象 的指針也可以轉換為 PyVarObject* (可變大小的Python對象會在下文中解釋)。 PyVarObejct 就是在PyObject的基礎上多了一個 ob_size 字段,用于存儲元素個數:

在PyObject結構中,還有一個類型對象指針 ob_type ,用于表示Python對象是什么類型,定義Python對象類型的是一個 PyTypeObject 接口體

實際定義是位于 Include/cpython/object.h 的 _typeobject :

在這個類型對象中,不僅包含了對象的類型,還包含了如分配內存大小、對象標準操作等信息,主要分為:

以Python中的 int類型 為例,int類型對象的定義如下:

從PyObject的定義中我們知道,每個對象的 ob_type 都要指向一個具體的類型對象,比如一個數值型對象 100 ,它的ob_type會指向 int類型對象PyLong_Type 。

PyTypeObject結構體第一行是一個PyObject_VAR_HEAD宏,查看宏定義可知PyTypeObject是一個變長對象

也就是說,歸根結底 類型對象也是一個對象 ,也有ob_type屬性,那 PyLong_Type 的 ob_type 是什么呢?

回到PyLong_Type的定義,第一行 PyVarObject_HEAD_INIT(PyType_Type, 0) ,查看對應的宏定義

由以上關系可以知道, PyVarObject_HEAD_INIT(PyType_Type, 0) = { { _PyObject_EXTRA_INIT 1, PyType_Type } 0} ,將其代入 PyObject_VAR_HEAD ,得到一個變長對象:

這樣看就很明確了,PyLong_Type的類型就是PyType_Typ,同理可知, Python類型對象的類型就是PyType_Type ,而 PyType_Type對象的類型是它本身

從上述內容中,我們知道了對象和對象類型的定義,那么根據定義,對象可以有以下兩種分類

Python對象定義有 PyObject 和 PyVarObject ,因此,根據對象大小是否可變的區別,Python對象可以劃分為 可變對象(變長對象) 和 不可變對象(定長對象)

原本的對象a大小并沒有改變,只是s引用的對象改變了。這里的對象a、對象b就是定長對象

可以看到,變量l仍然指向對象a,只是對象a的內容發生了改變,數據量變大了。這里的對象a就是變長對象

由于存在以上特性,所以使用這兩種對象還會帶來一種區別:

聲明 s2 = s ,修改s的值: s = 'new string' ,s2的值不會一起改變,因為只是s指向了一個新的對象,s2指向的舊對象的值并沒有發生改變

聲明 l2 = l ,修改l的值: l.append(6) ,此時l2的值會一起改變,因為l和l2指向的是同一個對象,而該對象的內容被l修改了

此外,對于 字符串 對象,Python還有一套內存復用機制,如果兩個字符串變量值相同,那它們將共用同一個對象:

對于 數值型 對象,Python會默認創建0~2 8 以內的整數對象,也就是 0 ~ 256 之間的數值對象是共用的:

按照Python數據類型,對象可分為以下幾類:

Python創建對象有兩種方式,泛型API和和類型相關的API

這類API通常以 PyObject_xxx 的形式命名,可以應用在任意Python對象上,如:

使用 PyObjecg_New 創建一個數值型對象:

這類API通常只能作用于一種類型的對象上,如:

使用 PyLong_FromLong 創建一個數值型對象:

在我們使用Python聲明變量的時候,并不需要為變量指派類型,在給變量賦值的時候,可以賦值任意類型數據,如:

從Python對象的定義我們已經可以知曉造成這個特點的原因了,Python創建對象時,會分配內存進行初始化,然后Python內部通過 PyObject* 變量來維護這個對象,所以在Python內部各函數直接傳遞的都是一種泛型指針 PyObject* ,這個指針所指向的對象類型是不固定的,只能通過所指對象的 ob_type 屬性動態進行判斷,而Python正是通過 ob_type 實現了多態機制

Python在管理維護對象時,通過引用計數來判斷內存中的對象是否需要被銷毀,Python中所有事物都是對象,所有對象都有引用計數 ob_refcnt 。

當一個對象的引用計數減少到0之后,Python將會釋放該對象所占用的內存和系統資源。

但這并不意味著最終一定會釋放內存空間,因為頻繁申請釋放內存會大大降低Python的執行效率,因此Python中采用了內存對象池的技術,是的對象釋放的空間會還給內存池,而不是直接釋放,后續需要申請空間時,優先從內存對象池中獲取。

python函數有哪些

1、print()函數:打印字符串;

2、raw_input()函數:從用戶鍵盤捕獲字符;

3、len()函數:計算字符長度;

4、format()函數:實現格式化輸出;

5、type()函數:查詢對象的類型;

6、int()函數、float()函數、str()函數等:類型的轉化函數;

7、id()函數:獲取對象的內存地址;

8、help()函數:Python的幫助函數;

9、s.islower()函數:判斷字符小寫;

10、s.sppace()函數:判斷是否為空格;

11、str.replace()函數:替換字符;

12、import()函數:引進庫;

13、math.sin()函數:sin()函數;

14、math.pow()函數:計算次方函數;

15、os.getcwd()函數:獲取當前工作目錄;

16、listdir()函數:顯示當前目錄下的文件;

17、time.sleep()函數:停止一段時間;

18、random.randint()函數:產生隨機數;

19、range()函數:返回一個列表,打印從1到100;

20、file.read()函數:讀取文件返回字符串;

21、file.readlines()函數:讀取文件返回列表;

22、file.readline()函數:讀取一行文件并返回字符串;

23、split()函數:用什么來間隔字符串;

24、isalnum()函數:判斷是否為有效數字或字符;

25、isalpha()函數:判斷是否全為字符;

26、isdigit()函數:判斷是否全為數字;

27、 lower()函數:將數據改成小寫;

28、upper()函數:將數據改成大寫;

29、startswith(s)函數:判斷字符串是否以s開始的;

30、endwith(s)函數:判斷字符串是否以s結尾的;

31、file.write()函數:寫入函數;

32、file.writeline()函數:寫入文件;

33、abs()函數:得到某數的絕對值;

34、file.sort()函數:對書數據排序;

35、tuple()函數:創建一個元組;

36、find()函數:查找 返回的是索引;

37、dict()函數:創建字典;

38、clear()函數:清楚字典中的所有項;

39、copy()函數:復制一個字典,會修改所有的字典;

40、 get()函數:查詢字典中的元素。

…………

python查看對象內存地址的函數

在python中可以用id()函數獲取對象的內存地址。

#例如:

object = 1 + 2

print(id(object)) #4304947776

python的內置函數有哪些,都是什么意思?

print-輸出,input-輸入,int-將字符串轉數字(字符串必須是數字),str-將數字轉為字符串,list-將字符串/數字轉為列表,for-有限循環,while-無限循環……………………………………

當前文章:python找對象函數 Python中對象
本文鏈接:http://www.yijiale78.com/article42/hgcdec.html

成都網站建設公司_創新互聯,為您提供App設計網站設計公司標簽優化服務器托管App開發動態網站

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

網站建設網站維護公司