99偷拍视频精品区一区二,口述久久久久久久久久久久,国产精品夫妇激情啪发布,成人永久免费网站在线观看,国产精品高清免费在线,青青草在线观看视频观看,久久久久久国产一区,天天婷婷久久18禁,日韩动漫av在线播放直播

python里的插值函數 python字符串插值

python可否用自定義函數對數據進行插值

直接定義a=True/False就行,示例代碼:

讓客戶滿意是我們工作的目標,不斷超越客戶的期望值來自于我們對這個行業的熱愛。我們立志把好的技術通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領域值得信任、有價值的長期合作伙伴,公司提供的服務項目有:域名注冊虛擬主機、營銷軟件、網站建設、正藍網站維護、網站推廣。

#定義布爾值類型參數a,b,值分別為True,False

a=True

b=False

print a,b

print type(a),type(b)

True False

type 'bool' type 'bool'

Python中的布爾類型:

Python的布爾類型有兩個值:True和False(注意大小寫要區分)

python怎樣對矩陣進行插值?

首先需要創建數組才能對其進行其它操作。

我們可以通過給array函數傳遞Python的序列對象創建數組,如果傳遞的是多層嵌套的序列,將創建多維數組(下例中的變量c):

a = np.array([1, 2, 3, 4])

b = np.array((5, 6, 7, 8))

c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])

b

array([5, 6, 7, 8])

c

array([[1, 2, 3, 4],

[4, 5, 6, 7],

[7, 8, 9, 10]])

c.dtype

dtype('int32')

數組的大小可以通過其shape屬性獲得:

a.shape

(4,)

c.shape

如何通過python實現三次樣條插值

spline函數可以實現三次樣條插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi這兩個函數也是三次樣條插值函數,具體你可以help一下!

python線性插值解析

在缺失值填補上如果用前后的均值填補中間的均值, 比如,0,空,1, 我們希望中間填充0.5;或者0,空,空,1,我們希望中間填充0.33,0.67這樣。

可以用pandas的函數進行填充,因為這個就是線性插值法

df..interpolate()

dd=pd.DataFrame(data=[0,np.nan,np.nan,1])

dd.interpolate()

補充知識:線性插值公式簡單推導

以上這篇python線性插值解析就是我分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持。

詳解Python實現線性插值法

在算法分析過程中,我們經常會遇到數據需要處理插值的過程,為了方便理解,我們這里給出相關概念和源程序,希望能幫助到您!

已知坐標 (x0, y0) 與 (x1, y1),要求得區間 [x0, x1] 內某一點位置 x 在直線上的y值。兩點間直線方程,我們有

那么,如何實現它呢?

依據數值分析,我們可以發現存在遞歸情況

執行結果;

此外,我們也可以對一維線性插值使用指定得庫:numpy.interp

將一維分段線性插值返回給具有給定離散數據點(xp,fp)的函數,該函數在x處求值

檢查: 如果xp沒有增加,則結果是無意義的。

另一方面:線性插值是一種使用線性多項式進行曲線擬合的方法,可以在一組離散的已知數據點范圍內構造新的數據點。

實際上,這可能意味著您可以推斷已知位置點之間的新的估計位置點,以創建更高頻率的數據或填寫缺失值。

以最簡單的形式,可視化以下圖像:

在此,已知數據點在位置(1,1)和(3,3)處為紅色。使用線性迭代,我們可以在它們之間添加一個點,該點可以顯示為藍色。

這是一個非常簡單的問題,如果我們擁有更多已知的數據點,并且想要特定頻率的插值點又該怎么辦呢?

這可以使用numpy包中的兩個函數在Python中非常簡單地實現:

我們有十個已知點,但是假設我們要一個50個序列。

我們可以使用np.linspace做到這一點;序列的起點,序列的終點以及我們想要的數據點總數

起點和終點將與您的初始x值的起點和終點相同,因此在此我們指定0和2 * pi。我們還指定了對序列中50個數據點的請求

現在,進行線性插值!使用np.interp,我們傳遞所需數據點的列表(我們在上面創建的50個),然后傳遞原始的x和y值

現在,讓我們繪制原始值,然后覆蓋新的內插值!

您還可以將此邏輯應用于時間序列中的x和y坐標。在這里,您將根據時間對x值進行插值,然后針對時間對y值進行插值。如果您想在時間序列中使用更頻繁的數據點(例如,您想在視頻幀上疊加一些數據),或者缺少數據點或時間戳不一致,這將特別有用。

讓我們為一個場景創建一些數據,在該場景中,在60秒的比賽時間里,一輛賽車僅發出十個位置(x&y)輸出(在整個60秒的時間內,時間也不一致):

參考文獻

雙線性插值法原理 python實現

碼字不易,如果此文對你有所幫助,請幫忙點贊,感謝!

一. 雙線性插值法原理:

? ? ① 何為線性插值?

? ? 插值就是在兩個數之間插入一個數,線性插值原理圖如下:

? ? ② 各種插值法:

? ? 插值法的第一步都是相同的,計算目標圖(dstImage)的坐標點對應原圖(srcImage)中哪個坐標點來填充,計算公式為:

? ? srcX = dstX * (srcWidth/dstWidth)

? ? srcY = dstY * (srcHeight/dstHeight)

? ? (dstX,dstY)表示目標圖像的某個坐標點,(srcX,srcY)表示與之對應的原圖像的坐標點。srcWidth/dstWidth 和 srcHeight/dstHeight 分別表示寬和高的放縮比。

? ? 那么問題來了,通過這個公式算出來的 srcX, scrY 有可能是小數,但是原圖像坐標點是不存在小數的,都是整數,得想辦法把它轉換成整數才行。

不同插值法的區別就體現在 srcX, scrY 是小數時,怎么將其變成整數去取原圖像中的像素值。

最近鄰插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入選取最接近的整數。這樣的做法會導致像素變化不連續,在目標圖像中產生鋸齒邊緣。

雙線性插值(Bilinear Interpolation):雙線性就是利用與坐標軸平行的兩條直線去把小數坐標分解到相鄰的四個整數坐標點。權重與距離成反比。

? ??雙三次插值(Bicubic Interpolation):與雙線性插值類似,只不過用了相鄰的16個點。但是需要注意的是,前面兩種方法能保證兩個方向的坐標權重和為1,但是雙三次插值不能保證這點,所以可能出現像素值越界的情況,需要截斷。

? ? ③ 雙線性插值算法原理

假如我們想得到未知函數 f 在點 P = (x, y) 的值,假設我們已知函數 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四個點的值。最常見的情況,f就是一個像素點的像素值。首先在 x 方向進行線性插值,然后再在 y 方向上進行線性插值,最終得到雙線性插值的結果。

④ 舉例說明

二. python實現灰度圖像雙線性插值算法:

灰度圖像雙線性插值放大縮小

import numpy as np

import math

import cv2

def double_linear(input_signal, zoom_multiples):

'''

雙線性插值

:param input_signal: 輸入圖像

:param zoom_multiples: 放大倍數

:return: 雙線性插值后的圖像

'''

input_signal_cp = np.copy(input_signal)? # 輸入圖像的副本

input_row, input_col = input_signal_cp.shape # 輸入圖像的尺寸(行、列)

# 輸出圖像的尺寸

output_row = int(input_row * zoom_multiples)

output_col = int(input_col * zoom_multiples)

output_signal = np.zeros((output_row, output_col)) # 輸出圖片

for i in range(output_row):

? ? for j in range(output_col):

? ? ? ? # 輸出圖片中坐標 (i,j)對應至輸入圖片中的最近的四個點點(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值

? ? ? ? temp_x = i / output_row * input_row

? ? ? ? temp_y = j / output_col * input_col

? ? ? ? x1 = int(temp_x)

? ? ? ? y1 = int(temp_y)

? ? ? ? x2 = x1

? ? ? ? y2 = y1 + 1

? ? ? ? x3 = x1 + 1

? ? ? ? y3 = y1

? ? ? ? x4 = x1 + 1

? ? ? ? y4 = y1 + 1

? ? ? ? u = temp_x - x1

? ? ? ? v = temp_y - y1

? ? ? ? # 防止越界

? ? ? ? if x4 = input_row:

? ? ? ? ? ? x4 = input_row - 1

? ? ? ? ? ? x2 = x4

? ? ? ? ? ? x1 = x4 - 1

? ? ? ? ? ? x3 = x4 - 1

? ? ? ? if y4 = input_col:

? ? ? ? ? ? y4 = input_col - 1

? ? ? ? ? ? y3 = y4

? ? ? ? ? ? y1 = y4 - 1

? ? ? ? ? ? y2 = y4 - 1

? ? ? ? # 插值

? ? ? ? output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])

return output_signal

# Read image

img = cv2.imread("../paojie_g.jpg",0).astype(np.float)

out = double_linear(img,2).astype(np.uint8)

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 灰度圖像雙線性插值實驗結果:

四. 彩色圖像雙線性插值python實現

def BiLinear_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

img=np.pad(img,((0,1),(0,1),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH-1):

? ? for j in range(dstW-1):

? ? ? ? scrx=(i+1)*(scrH/dstH)

? ? ? ? scry=(j+1)*(scrW/dstW)

? ? ? ? x=math.floor(scrx)

? ? ? ? y=math.floor(scry)

? ? ? ? u=scrx-x

? ? ? ? v=scry-y

? ? ? ? retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('3.png')

五. 彩色圖像雙線性插值實驗結果:

六. 最近鄰插值算法和雙三次插值算法可參考:

① 最近鄰插值算法:

???

? ? ② 雙三次插值算法:

七. 參考內容:

? ??

???

新聞標題:python里的插值函數 python字符串插值
轉載源于:http://www.yijiale78.com/article8/doddpop.html

成都網站建設公司_創新互聯,為您提供外貿建站網站內鏈定制開發企業建站搜索引擎優化

廣告

聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯

綿陽服務器托管